Spain presents important inequalities in the use and management of water for their economic activities. Regions of the Lower Almanzora (Barragán Alarcón, 2009) or of the Bárdenas (Causapé et al., 2004), have limited water resources within the national scheme. Deficits have tried to be overcome in different ways in the first decade of the 21st century (Several authors 2002; Medina San Juan 1999; Garrido and Llamas 2009; Molinero et al. 2011). Antique models of planning have been discarded (Sáenz Ridruejo and Sáenz Ridruejo, 1993).
However, if Spanish water balance is compared with other areas of developing countries, such as those existing in Latin America (UNESCO 2010; Margat 2008), the shortcomings remain in the background, because in Latin America there are large areas where development is conditioned on the existence of sufficient useful water. In these areas, food availability and safe-supply must be met. In those areas where groundwater may be affected by inadequate management of waste must be established a perimeter of protection (IGME, 1996). The type of research carried out in Africa (Vegter 1996) may be carried out in South America and all Latin America, saving geographical and economic differences.
The chance to represent the countries of Latin America in hydrogeology is evident in those areas where for decades hydrogeological studies of international interest have been carried out, as are Sonora (Morales Montano et al. , 2001) or the Mezquital Valley (Jiménez Cisneros et al. 1999) in Mexico; Northern Chile (Salazar et al. 1999); the provinces of Mendoza (Morabito, 2002), and La Pampa (Malan and Marino, 1999) in Argentina. While in NE South America and throughout the Amazon basin cyclones and tropical depressions condition zones of high recharge, it is also true that there are areas of shadow, under permanent anti-cyclonic fronts, and areas of high rate of continental climate.
In Tarapaca, extreme North of Chile, I’ve had the opportunity to study an aquifer of great size (Pampa del Tamarugal, with more than 16000 km2). In these aquifers treatment presents some methodological differences with the one of aquifers of small size such as the Almeria or the Bardenas aquifers: the use of GIS, data availability, quantitative aspects, and the accuracy of the recharge (Contreras 2006; Scanlon 2006) are more important issues; there is less space for the research on secondary aspects of hydrochemistry of minority components (Fagundo 2006).
The demands of water from the population and agricultural activities undergo continuous increments and must be supported in the use of groundwater. Hydrogeology is a living science that can enhance some aspects of hydrological research (Several authors, 1983; Iglesias and Villanueva 1984, Potter Wickware 1998, USGS National Research Program web page). On the other hand, the techniques of artificial recharge can facilitate the storage of water resources (Martin Rosales et al. 2007).
The use of the underground reservoirs extracting fossil water and storing water from rivers, may collide with the Trans-boundary laws in many countries (E.g. Guaraní aquifer: Argentina, Brasil, Parguay and Uruguay), with the environmental laws and with the indigenous people laws.
Vulnerability to climate change is greater in these areas of high aridity, which are already very affected by the shortage. The question for those functionaries who are responsable on the policies is: What is the amount of water available and how long will it remain? Only by solving this issue sustainable policies can be carried out and the social conflicts to be avoided. On the other hand, a good management of the activities requires considering all the options.
Referencias
Barragán Alarcón (2009): Hidrogeología e hidrogeoquímica de los acuíferos del Bajo Almanzora. Tesis Doct. Univ. Almeria. 299 p. + Anejos
Causapé, J.; Auqué, L.; Gimeno, M.J.; Mandado, J.; Quílez, D.; Aragüés, R. (2004): Irrigation effects on the salinity of the Riguel and Arba Rivers (Spain ): present diagnosis and expected evolution using geochemical models. Environ. Geol., 45, 703-715.
Contreras, S. (2006): Distribución espacial del balance hídrico anual en regiones montañosas semiáridas. Aplicación en Sierra de Gádor (Almería). Tesis Doct. Univ. Almería. EEZA CSIC. 120 p. + anejos
Fagundo Castillo, J.R. (2006): Contribución al desarrollo de la hidrogeoquímica. Aplicacion a la caracterización de cuencas hidrográficas, acuíferos y yacimientos de aguas minerales y mineromedicinales. La Habana. 315 p.
Garrido, A.; Llamas, M.R. (Eds) 2009. Water policy in Spain . Taylor & Francis, Leiden . 254 p.
Iglesias, A.; Villanueva, M. (1984): Pozos y acuíferos: Técnicas de evaluación mediante ensayos de bombeo, IGME. 425 p.
IGME (1996): Guía para la elaboración de perímetros de protección de las aguas minerales y termales. 102 p.
Jiménez Cisneros, B.; Chávez Mejía, A.; Barrios Ordóñez, E. (1999).- Recarga del acuífero del Valle del Mezquital por el reuso masivo de aguas residuales municipales en riego agrícola. 9º Simposio sobre recarga bienal sobre recarga artificial de agua subterránea.
Malán, J.M.; Mariño E.E. (1999) Algunas evidencias de la ocurrencia de recarga indirecta en un sector del Sureste pampeano. Actas del I Congreso Argentino de Cuaternario y Geomorfología, Santa Rosa.
Margat J. (2008): L’eau dans le monde. BRGM, UNESCO, 187 p.
Martín Rosales, W.; Gisbert, J.; Pulido Bosch, A.; Vallejos, A.; Fernández Cortés, A. (2007): Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain ). Environmental Geology, 52, 985-995.
Medina San Juan, J.A. (1999) Desalación de aguas salobres y de mar: osmosis inversa, Mundiprensa. 396 p.
Molinero, J.; Custodio, E.; Sahuquillo, A.; Llamas, M.R. (2011) Groundwater in Spain: Legal framework and management issues. Findikakis A.N. and Sato K. (Eds) Groundwater management Practices. CRC Press
Morabito, J. (2002).- Modelización hidrológica de la cuenca norte de la provincia de Mendoza
Morales Montaño, M.; Rangel Medina, M.; Castillo Gurrola, J.; Monreal Saavedra, R. (2001): El Acuífero de la Costa de Hermosillo. Convención Internacional de la Asociación de Ingenieros de Minas Metalurgistas y Geologos de Mexico A.C., Acapulco Guerrero, 17-20 de octubre del 2001.
Potter Wickware (1998): Water and welfare: hydrology options. Nature, 396: 496
Reyna S.M.; Reyna, T.M (1998): Interaccion de los procesos de escorrentia e infiltracion.
Sáenz Ridruejo, Clemente. y Sáenz Ridruejo, F. (1993): "El Plan nacional de Obras Hidráulicas: autor colaboradores y circunstancias que concurrieron en su realización". Plan Nacional de Obras Hidráulicas 1933, MOPTMA, 45-65.
Salazar, C.; Rojas, L.; Pollastri, A. (1999): Evaluación de recursos hídricos en el sector de Pica, Hoya Pampa del Tamarugal, I Región-Chile. VI CONAPHI, 16 p.
Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M. y Simmers, I. (2006): Global Synthesis of groundwater recharge in semiarid and arid regions. Hydrolgical Processes, 20: 3335-3370.
Several authors (1983): Hidrología subterránea. Custodio, E. y Llamas, M.R. (Eds) Ed. Omega, Barcelona, Vol.I y II., 2359 p.
Several authors (2002): Insuficiencias hídricas y Plan Hidrológico Nacional. Instituto universitario de Geografía, Universidad de Alicante, Caja de Ahorros del Mediterráneo. Gil Olcina, A. y Morales Gil, A. (Eds). ISBN 84-7908-666-1.511 p.
UNESCO, 2010. “Atlas de Zonas Áridas de América Latina y el Caribe”. Dentro del marco del proyecto “Elaboración del Mapa de Zonas Áridas, Semiáridas y Subhúmedas de América Latina y el Caribe”. CAZALAC. Documentos Técnicos del PHI-LAC, N°25.
Vegter, J.R. (1996): Goundwater maps of South Africa . Environ. Geol., 28 (2): 111-113
http://water.usgs.gov/nrp/index-regions.html